

Planning Proposal

Proposed Mix-Use Development 80 O'Sullivan Road, Leumeah

 Reference:
 21.219r02v02

 Date:
 July 2021

State Barris

Suite 2.08, 50 Holt St Surry Hills, NSW 2010

t: (02) 8324 8700 w: www.traffix.com.au

DOCUMENT VERIFICATION

Job Number	21.219			
Project	80 O'Sullivan Road,	Leumeah		
Client	Red Cape Hotel Group Pty Ltd			
Revision	Date	Prepared By	Checked By	Signed
v02	16/07/2021	Neil Caga	Vince Doan	4

CONTENTS

1.	Introduction	1
2.	Location and Site	2
3.	Existing Traffic Conditions	5
	3.1 Road Network	5
	3.2 Key Intersections	7
	3.3 Public Transport	10
4.	Description of the Planning Proposal	12
5.	Parking Requirements	13
	5.1 Car Parking	13
	5.2 Accessible Parking	17
	5.3 Bicycle Parking	17
	5.4 Motorcycle Parking	18
	5.5 Refuse Collection and Servicing	18
6.	Traffic and Transport Impacts	19
	6.1 Existing Traffic Generation	19
	6.2 Development Traffic Generation	20
	6.3 Net Traffic Generation	21
	6.4 Traffic Distribution	21
	6.5 Peak Period Intersection Performance	23
7.	Access and Internal Design Aspects	27
	7.1 Vehicular Access	27
	7.2 Internal Design	28
	7.3 Summary	29
8.	Conclusions	30

Appendices

Appendix A: Photographic Record Appendix B: Reduced Plans Appendix C: SIDRA Outputs

1. INTRODUCTION

TRAFFIX has been commissioned by Red Cape Hotel Group Pty Ltd to undertake a traffic impact assessment in support of a planning proposal relating to mixed-use development at 80 O'Sullivan Rd, Leumeah. The development is located within the Campbelltown City Council local government area and has been assessed under that Council's controls.

This report documents the findings of our investigations and should be read in the context of the planning report, prepared separately.

The report is structured as follows:

-) Section 2: Describes the site and its location
-) Section 3: Documents existing traffic conditions
-) Section 4: Describes the proposed development
-) Section 5: Assesses the parking requirements
-) Section 6: Assesses traffic impacts
-) Section 7: Discusses access and internal design aspects
-) Section 8: Presents the overall study conclusions

2. LOCATION AND SITE

The subject site at 80 O'Sullivan Road, Leumeah is located approximately 2.4 kilometres northeast of Campbelltown town centre and 190 metres south of Leumeah Railway Station. More specifically, it is situated on the northeast corner of the Pembroke Road and O'Sullivan Road intersection and is legally identified as Lot 201 in DP1052199.

The site is irregular in configuration, with a total site area of 8,117m² and comprises the following boundaries and approximate lengths:

-) 120 metre northern boundary to neighbouring residential properties and at-grade carpark;
-) 120 metre eastern boundary to vacant land and an at-grade carpark;
-) 110 metre southern frontage to Pembroke Road; and
-) 40 metre western frontage to O'Sullivan Road.

The site accommodates the Leumeah Hotel an existing registered hotel, Liquor Stax Leumeah Bottle Shop and associated at-grade carpark. The site currently accommodates three (3) vehicular access from O'Sullivan Road in the north via an internal road, O'Sullivan Road in the west and Pembroke Road in the southeast corner of the site.

A Location Plan is presented in **Figure 1**, with a Site Plan presented in **Figure 2**. Reference should also be made to the Photographic Record presented in **Appendix A**, which provides an appreciation of the general character of roads and other key attributes in proximity to the site.

Figure 1: Location Plan

Figure 2: Site Plan

3. EXISTING TRAFFIC CONDITIONS

3.1 Road Network

The road hierarchy in the vicinity of the site is shown in **Figure 3** with the following roads of particular interest:

)	Pembroke Road:	forms part of an RMS Main Road (MR680) that traverses north- south between Minto Road in the north and Rudd Road in the south. Within the vicinity of the site, it is subject to 60km/h speed zoning and accommodates a single lane of traffic in each direction. Pembroke Road does not permit on-street parking along either side of the road.
)	Rudd Road:	forms part of an RMS Main Road (MR680) that traverses east- west between Pembroke Road in the east and Campbelltown Road via Queen Street in the west. It is subject to 60km/h speed zoning and accommodates a single lane of traffic in each direction. Rudd Road permits unrestricted on-street parking along both sides of the road.
)	Rose Payten Drive:	forms part of an unclassified regional road (RR7190) that traverses east-west between Leumeah Road via Smiths Creek Bypass in the east and Campbelltown Road in the west. It is subject to 60km/h speed zoning and accommodates 1-2 lanes of traffic in each direction. Rose Payten Drive does not permit on-street parking along either side of the road.
)	O'Sullivan Road:	a local road that traverses north-south between Old Leumeah Road in the north and Lindesay Street in the south. Within the vicinity of the site, it is subject to 50km/h speed zoning and accommodates a single lane of traffic in each direction. O'Sullivan Road permits unrestricted on-street parking along both sides of the road.

) Old Leumeah Road: a local road that traverses north-south between O'Sullivan Road in the north and Pembroke Road in the south. It is subject to 50km/h speed zoning and accommodates a single lane of traffic in each direction. Old Leumeah Road does not permit on-street parking on either side of the road.

It can be seen from **Figure 3** that the site is conveniently located within the main arterial roads serving the region, being Campbelltown Road and Pembroke/Rudd Road. As such, traffic is able to be distributed onto the wider road network, minimising traffic impacts.

Figure 3: Road Hierarchy

3.2 Key Intersections

The key intersections in the vicinity of the site are shown below and provide an understanding of the existing road geometry and alignment.

3.2.1 O'Sullivan Road, Pembroke Road and Rudd Road

It can be seen from **Figure 4** that the intersection of O'Sullivan Road, Pembroke Road and Rudd Road is a four-legged roundabout, with a pedestrian refuge island provided for each leg.

Figure 4: O'Sullivan Road, Pembroke Road and Rudd Road Intersection

The main attributes of each approach are outlined as follows:

-) O'Sullivan Road (north-south)
 - The northern approach provides a single lane from which all movements can be made.
 - The southern approach provides two (2) lanes, with left turns permitted via a slip lane and all other movements permitted from the eastern lane.
-) Pembroke Road and Rudd Road (east-west)
 - The eastern approach provides a single lane from which all movements can be made.
 - The western approach provides a single lane from which all movements can be made.

3.2.2 Pembroke Road and Old Leumeah Road

It can be seen from **Figure 5** that the intersection of Pembroke Road and Old Leumeah Road is a three-legged signalised intersection, with Pembroke Road being the major road and signalised pedestrian crossings on the northern and eastern legs.

Figure 5: Pembroke Road and Old Leumeah Road Intersection

The main attributes of each approach are outlined as follows:

-) Pembroke Road (east-west)
 - The eastern approach provides two (2) lanes, with a dedicated right-turn only lane and a single through-lane.
 - The western approach provides two (2) through lanes, with left-turns permitted from the northern lane.
-) Old Leumeah Road (north)
 - The northern approach provides two (2) lanes, with left-turns permitted from the eastern lane and right-turns permitted from the western lane.

3.2.3 Pembroke Road and Rose Payton Drive

It can be seen from **Figure 6** that the intersection of Pembroke Road and Rose Payton Drive is a four-legged signalised intersection, with all legs provided slip lanes with zebra crossings and signalised pedestrian crossings on the eastern, southern and western legs.

Figure 6: Pembroke Road and Rose Payton Drive Intersection

The main attributes of each approach are outlined as follows:

-) Pembroke Road (east-west)
 - The eastern approach provides four (4) lanes including a single dedicated right-turn lane, a single slip lane for left-turn movements and two (2) through lanes.
 - The western approach provides four (4) lanes including a single dedicated right-turn lane, a single slip lane for left-turn movements and two (2) through lanes.
-) Rose Payton Drive (north-south)
 - The northern approach provides four (4) lanes including a single dedicated right-turn lane, a single slip lane for left-turn movements and two (2) through lanes.
 - The southern approach provides four (4) lanes including a single dedicated right-turn lane, a single slip lane for left-turn movements and two (2) through lanes.

3.3 Public Transport

The existing public transport services operating in the locality are presented in Figure 7 and outlined as follows.

3.3.1 Train Services

The site is situated approximately 190 metres south of Leumeah Railway Station, which provides train services along the T8 Airport and South Line between Leppington in the north, Macarthur in the south and Central in the east. Accordingly, this railway station connects commuters to the wider public transport network and provides regular train services 10-15 minutes.

3.3.2 Bus Services

The site is situated within optimal walking distance (400 metres) of several bus services operating in the locality, with the closest situated on O'Sullivan Road, along the western frontage of the site. These bus stops provide a loop service between Campbelltown to Leumeah North (Route 881) in addition to bus routes and associated service frequencies outlined in **Table 1** below.

Pue No	Pouto	Service Frequency		
DUS NO.	KOULE	Weekday	Weekend	
870	Campbelltown to Liverpool	Every 30 minutes	Every 30-60 minutes	
871	Campbelltown to Liverpool via Glenfield	Every 60 minutes	Every 60 minutes	
872	Campbelltown to Liverpool via Macquarie Fields	Every 30 minutes	Every 30 minutes	
879	Leumeah to Campbelltown vias Blair Athol	Every 30 minutes	Every 60 minutes	

Table 1: Bus Routes and Service Frequencies

Figure 7: Public Transport

4. DESCRIPTION OF THE PLANNING PROPOSAL

A detailed description of the planning proposal is provided in the planning report, prepared separately. In summary, the planning proposal for which approval is now sought for changes to the LEP comprises the following components:

-) Demolition of all existing structures;
-) Construction of residential component with a total of 178 dwellings, including:
 - 56 x one-bedroom dwellings;
 - 100 x two-bedroom dwellings; and
 - 22 x three-bedroom dwellings.
-) Construction of retail shops with a total of GFA of 790m² GFA;
-) Construction of a registered hotel with a total GFA of 2,000m².
-) Provision of approximately 320 car parking spaces within basement level car parking, with vehicular access from O'Sullivan Road; and
-) Retention of the existing vehicular access and associated deceleration lane on Pembroke Road for access to on-site refuse collection and servicing areas, inclusive.

The parking and traffic impacts arising from the development are discussed in **Section 5** and **Section 6**. Reference should be made to the plans submitted separately to Council which are presented at reduced scale in **Appendix B**.

5. PARKING REQUIREMENTS

5.1 Car Parking

5.1.1 Residential Component

The proposed development is situated approximately 190 metres south of Leumeah Railway Station and is therefore subject to the car parking requirements set out within the Apartment Design Guide and State Environmental Planning Policy (SEPP65), as outlined in **Table 2** below.

Туре	No. of Dwellings	Car Parking Rate	Parking Required ^[1]	Parking Provided
SEPP65 – Metropolitan Sub-Regional Centre				
One-bedroom	56	0.6 spaces per dwelling	33.6	
Two-bedroom	100	0.9 spaces per dwelling	90	100
Three-bedroom	22	1.4 spaces per dwelling	30.8	190
Visitors	178	1 space per 5 dwellings	35.6	
	тс	DTAL	190	190

Table 2: SEPP65 Car Parking Rates and Provisions

It can be seen from **Table 2** that the development is nominally required to provide a total of 190 car parking spaces. In response, the development proposes a total of 320 car parking spaces within the basement levels, including 190 spaces to be designated for the residential component of the development. This car parking provision is therefore considered acceptable to satisfy the requirements of SEPP65 and will ensure all residential car parking demands are contained within the development.

5.1.2 Retail Component

The Campbelltown Development Control Plan 2015 (DCP) provides the car parking rates for retail shops on the ground floor level at a rate of one (1) car parking space per 25m² GFA. Application of this rate to the proposed 790m² GFA, results in a car parking requirement for 32 spaces for the retail component of the development.

In response, the development proposes a total of 320 car parking spaces within the basement levels, including 32 spaces to be designated for the retail component of the development. This car parking provision is sufficient to satisfy the requirements of the DCP, hence considered acceptable.

5.1.3 Registered Club Component

The car parking requirements of the registered club component of the development have been assessed in accordance with the Roads and Maritime Services (RMS) Guide to Traffic Generating Developments 2002 (RMS Guide), which provides a more site-specific parking assessment, rather than a reliance on 'generic' DCP parking rates. Accordingly, the RMS Guide 2002 provides the following advice regarding the parking provision for 'Hotel – Traditional' developments:

'It is recommended that proposed hotel developments be compared to similar existing developments, noting the existing supply of, and demand for parking in the area, and of the peak parking periods of individual facilities within the hotel.'

The proposed registered club component of the development is most similar to that of a 'Club' development and as such, the RMS Guide 2002 provides the following similar advice regarding the parking provision for 'Club' developments:

'Off-street car parking must be provided to satisfy the average maximum demand. Research has indicated that the demand for parking varies substantially depending on the type of club and cannot readily be related to building floor areas or to the membership. The determination of the number of parking spaces required is therefore based on the characteristics of the proposed development. Comparisons must be drawn with similar clubs.'

In light of the above, the car parking requirements for the registered club component can be determined based on comparable surveyed rates of a similar development. With this in mind, the existing registered club (Leumeah Hotel – 2,147m² GFA) represents the most similar development to that of the proposed registered club component in terms of land use, GFA and location to public transport and surrounding residential catchments.

In order to determine a site-specific car parking demand rate, parking surveys were conducted during the peak periods (6:00pm-10:00pm) of the existing Leumeah Hotel on Friday 18 June 2021 and Saturday 19 June 2021, noting that these surveys were conducted prior to recent COVID-19 restrictions. These parking surveys identified an off-street parking supply of 114 spaces for the existing club development, with the results presented in **Chart 1** and **Chart 2** below.

Chart 1: Parking Surveys on Friday 18 June 2021

Chart 2: Parking Surveys on Saturday 19 June 2021

■ Vehicles Parked ■ Vacant Spaces

It can be seen from **Chart 1** and **Chart 2** that the peak parking demand was identified on Friday between 6:30pm-7:00pm for 60 parking spaces (52.6%), with 54 vacant spaces (47.4%). During both days, the surveys identified an average of 49 parked vehicles (42.9%), with 65 vacant spaces (57.1%).

In light of the above, a site-specific car parking rate based on the supply and demand of the existing registered club (Leumeah Hotel – 2,147m² GFA and 114 approved parking spaces) was determined as follows:

-) 1 car parking space per 18.8m² GFA (supply); and
-) 1 car parking space per 35.8m² GFA (demand).

Application of the above rates to the proposed registered club component with a GFA of 2,000m², results in a car parking requirement for 56 to 106 spaces. In response, the development proposes a total of 320 car parking spaces within the basement levels, including 98 spaces to be designated for the registered club component of the development. This car parking provision is in line with the existing (approved) parking supply and is sufficient to meet the peak parking demands (as per parking survey), hence considered acceptable.

5.1.4 Parking Provision Summary

In summary, the development proposes the car parking provisions as outlined in Table 3 below.

Туре	GFA/ No. of Dwellings	Applicable Car Parking Rate	Parking Required	Parking Provided
	Residential	– SEPP65 (Metropolitan Sub-Regional C	entre)	
One-bedroom	56	0.6 spaces per dwelling	33.6	
Two-bedroom	100	0.9 spaces per dwelling	90	100
Three-bedroom	22	1.4 spaces per dwelling	30.8	190
Visitors	178	1 space per 5 dwellings	35.6	
	•	Sub-Total	190	190
Retail Premises – DCP (GF Neighbourhood Shops)				
Retail Premises	790 GFA	1 space per 25m ² GFA	31.6	32
		Sub-Total	31.6	32
F	Registered Club – Site	e Specific Rates of Existing (Approved)	Registered Club	
		1 space per 18.8m ² GFA (Supply)	106.4	00
registered CIUD	2,000m² GFA	1 space per 35.8m ² GFA (Demand)	55.9	78
		Sub-Total	55.9 to 106.4	98
	τοτΑ	AL	278 to 328	320

It can be seen from **Table 3** that the proposed development is required to provide between 278 to 328 car parking spaces based on the aforementioned applicable parking rates and associated parking surveys. Accordingly, the development proposes approximately 320 car parking spaces, which is considered acceptable. Nevertheless, further assessment of the car parking provision would be conducted during the detailed development application (DA) stage noting a minimum of 278 car parking spaces being applicable with the likely hood of retail, hotel and residential visitors allowing shared use which is considered supportable.

5.2 Accessible Parking

The accessible parking provision for the proposed development will be determined during the detailed DA stage and is envisaged to incorporate accessible parking rates in accordance with AS4299 for the residential component and the Building Code of Australia (BCA) for the retail and registered club components, as outlined below:

)	1 accessible space per adaptable dwelling	(Residential – AS4299)
)	1 accessible space per 50 parking spaces or part thereof	(Retail – Class 6)
)	1 accessible space per 50 parking spaces or part thereof	(Club – Class 9)

5.3 Bicycle Parking

The bicycle parking provision for the proposed development will be determined during the detailed DA stage and is envisaged to incorporate bicycle parking rates in accordance with the Campbelltown DCP 2015 for the residential component and the Cycling Aspects of Austroads 2017 for the retail and registered club components, as outlined below:

)	1 bicycle storage per 5 dwellings	(Residential – DCP)
)	Bicycle parking rate for a shop, as per Austroads:	(Retail – Austroads)
	• 1 bicycle space per 300m ² GFA for staff; and	
	• 1 bicycle space per 500m ² GFA for visitors (over 1,000m ² GFA).	
)	Bicycle parking rate for a hotel, as per Austroads:	(Club – Austroads)
	• 1 bicycle space per 25m ² GFA bar floor area; and	
	• 1 bicycle space per 100m ² GFA lounge beer garden.	

5.4 Motorcycle Parking

The Campbelltown DCP 2015 does not provide motorcycle parking rates for the proposed development and as such, no motorcycle parking spaces are proposed.

5.5 Refuse Collection and Servicing

The provision for refuse collection and loading bays will be determined during the detailed DA stage, with the development proposed to provide on-site refuse collection and loading area on the eastern corner of the site. This loading area is proposed to be accessible from Pembroke Road via the existing vehicular access and associated deceleration lane, with these arrangements considered appropriate to ensure all servicing demands are contained on-site. Reference should be made to **Section 7.1.2** in relation to the design aspects of Pembroke Road Access.

6. TRAFFIC AND TRANSPORT IMPACTS

6.1 Existing Traffic Generation

6.1.1 Registered Club Component

The existing site accommodates the Leumeah Hotel registered club with a GFA of 2,147m². The RMS Guide to Traffic Generating Developments 2002 (RMS Guide) recommends the analysis of traffic generation for a 'Hotel – Traditional' development be based on surveys of similar existing hotels, noting that the existing development is more akin to a 'Club' development. With this in mind, the RMS Guide provides the following similar advice for 'Club' developments:

"Surveys of licensed clubs conducted by the RTA in 1978 indicate that it is difficult to generalise on their traffic generation because of the diversified nature of clubs. Traffic generation is affected by such factors as the provision of live entertainment, gambling facilities, number of members and club location. Behavioural changes since 1978, such as the introduction of random breath testing, also make such generalisations more difficult."

Traffic generation rates are therefore not specified in the RMS Guide for this component of development and in any event, such a rate would not be as accurate or reliable. As such, the RMS Guide prefers a methodology based on a survey assessment of comparable developments. TRAFFIX has had extensive experience with developments of this nature and has identified an average traffic generation rate of 2.38 veh/hr per 100m² GFA during the evening peak period based on surveys of comparable developments. It is noted that there is no applicable rate for the morning peak period.

Application of this rate to the existing registered club with a GFA of 2,147m², results in the following existing traffic generation for the registered club component:

)	0 veh/hr during the morning peak period	(0 in, 0 out); and
)	51 veh/hr during the evening peak period	(26 in, 25 out).

6.1.2 Drive-in Liquor Store Component

The existing site also accommodates a drive-in liquor store with an estimated GFA of 420m². The RMS Guide does not provide traffic generation rates for drive-in liquor stores and as such, the speciality retail store rate has been adopted being 4.60 veh/hr per 100m² GFA during the evening peak period, with 25% of this rate applied to the morning peak period to account for staff arrivals.

Application of the above rates to the existing drive-in liquor store, results in the following existing traffic generation for the drive-in liquor store component:

)	5 veh/hr during the morning peak period	(5 in, 0 out); and
)	19 veh/hr during the evening peak period	(9 in, 10 out).

6.1.3 Combined Existing Traffic Generation

In light of the above, the existing registered club and drive-in liquor store is estimated to have the following combined existing traffic generation:

)	5 veh/hr during the morning peak period	(5 in, 0 out); and
)	70 veh/hr during the evening peak period	(35 in, 35 out).

6.2 Development Traffic Generation

6.2.1 Registered Club Component

The proposed development includes a proposed registered club to replace the existing Leumeah Hotel with a GFA of 2,000m² and as such, the above registered club traffic generation rate is considered applicable for this component. Application of this rate would therefore result in the following anticipated traffic generation for the registered club component:

)	0 veh/hr during the morning peak period	(0 in, 0 out); and
)	48 veh/hr during the evening peak period	(24 in, 24 out).

6.2.2 Retail Component

The proposed development includes a retail component with a total GFA of 790m² and as such, the above traffic generation rates for speciality retail is considered applicable for this

(18 in, 18 out).

component. Application of this rate would therefore result in the following anticipated traffic generation for the retail component:

-) 9 veh/hr during the morning peak period (9 in, 0 out); and
-) 36 veh/hr during the evening peak period

6.2.3 Residential Component

The proposed development includes a residential component with a total of 178 dwellings. The RMS Technical Direction TDT 2013/04a (RMS TDT) provides updated traffic generation rates for high density residential developments at a rate of 0.19 and 0.15 veh/hr per dwelling during the morning and evening peak periods, respectively. Application of these rates would therefore result in the following anticipated traffic generation for the residential component:

)	34 veh/hr during the evening peak period	(7 in, 27 out).
)	27 veh/hr during the evening peak period	(22 in, 5 out).

6.2.4 Combined Proposed Traffic Generation

In light of the above, the proposed development is estimated to have the following combined anticipated traffic generation:

)	43 veh/hr during the morning peak period	(16 in, 27 out); and
)	111 veh/hr during the evening peak period	(64 in, 47 out).

6.3 Net Traffic Generation

The above traffic generation is not however a net increase over existing conditions. When accounting for the existing uses of the site, the proposed development will generate:

)	+38 vehicle trips per hour in the morning peak period	(+11 in, +27 out); and
)	+41 vehicle trips per hour in the evening peak period	(+29 in, +12 out).

6.4 Traffic Distribution

Journey to Work (JTW) data from the 2016 Census for the Leumeah – Minto Heights SA2 area has been used to determine the future distribution of traffic to and from the proposed development. In this regard the localised distribution of the proposed development's traffic onto the surrounding road network is summarised in **Table 4** below, noting that a large proportion of traffic would be residential and as such, the residential JTW data has been used to establish the distributions.

Direction	Inbound Movements	Outbound Movements	Locations (To/From)
West via Rudd Street	36%	36%	Campbelltown, Woodbine
East via O'Sullivan Street	6%	6%	Leumeah
South-East via Smiths Creek Bypass	6%	6%	Minto Heights,
North-East via Rose Payten Drive	34%	34%	Sydney, Liverpool
South via Pembroke Road	18%	18%	Minto, Ingleburn

Table 4: Traffic Distributions

Based on the above, **Figure 8**, **Figure 9** and **Figure 10** below shows the distributions of the traffic generated by the proposed development at the three (3) key intersections within the vicinity of the site during the weekday morning and evening peak hour and during the Saturday peak hour. It is noted that as a worst case scenario, the weekday evening traffic generation and distribution has been adopted for SIDRA Intersection 9 modelling as presented in **Section 6.5** of the report.

Figure 8: Weekday Morning Peak Period Distribution

Figure 9: Weekday Evening Peak Period Distribution

Figure 10: Weekend Peak Period Distribution

6.5 Peak Period Intersection Performance

Traffic surveys were undertaken of the key intersections described in **Section 3.2**, which are considered to be most critical in relation to the site. These counts were undertaken on Thursday 17 June 2021 during the network peak periods, being between 7:00am and 9:00am (morning peak period) and 4:00pm and 6:00pm (evening peak period) and on Saturday 19 June 2021 between 11:00am and 5:00pm.

This data forms the base case volumes for software modelling undertaken to assess intersection performance characteristics under existing traffic conditions. The SIDRA Intersection 9 model produces a range of outputs, the most useful of which are the Degree of Saturation (DoS) and Average Vehicle Delay per vehicle (AVD). The AVD is in turn related to a level of service (LoS) criteria. These performance measures can be interpreted using the following explanations:

- **DoS** the DoS is a measure of the operational performance of individual intersections. As both queue length and delay increase rapidly as DoS approaches 1, it is usual to attempt to keep DoS to less than 0.9. When DoS exceeds 0.9 residual queues can be anticipated, as occurs at many major intersections throughout the metropolitan area during peak periods. In this regard, a practical limit at 1.1 can be assumed. For intersections controlled by roundabout or give way / stop control, satisfactory intersection operation is generally indicated by a DoS of 0.8 or less.
- **AVD** the AVD for individual intersections provides a measure of the operational performance of an intersection. In general, levels of acceptability of AVD for individual intersections depend on the time of day (motorists generally accept higher delays during peak commuter periods) and the road system being modelled (motorists are more likely to accept longer delays on side streets than on the main road system).
- **LoS** this is a comparative measure which provides an indication of the operating performance of an intersection as shown in **Table 5** below.

Level of Service (LoS)	Average Delay per Vehicle (secs/veh)	Traffic Signals, Roundabout	Give Way, Stop Signs
A	less than 14	Good operation	Good operation
В	15 to 28	Good with acceptable delays and spare capacity	Acceptable delays and spare capacity
С	29 to 42	Satisfactory	Satisfactory but accident study required
D	43 to 56	Operating near capacity	Near capacity and accident study required
E	57 to 70	At capacity; at signals incidents will cause excessive delays. Roundabouts require other control mode	At capacity and requires other control mode
F	More than 70	Unsatisfactory and requires additional capacity.	Unsatisfactory and requires other control mode or major treatment.

Table 5: Intersection Performance Indicators (RMS)

The traffic impacts arising from the proposed development during the critical morning peak period have been assessed by loading the distributed traffic volumes into the SIDRA Intersection model. The results of this software modelling are summarised in **Table 6** below, with detailed outputs provided in **Appendix C** for individual lanes and approaches.

Intersection	Period	Scenario	Degree of Saturation	Average Delay	Level of Service
		Existing	0.808	12.2	А
O'Sullivan Road	AM	Existing + Development	0.822	12.8	А
and Pombroko Poad	DM	Existing	0.929	16.7	В
T embloke kodd	PM	Existing + Development	0.953	19.6	В
(Roundabout)	Weekend	Existing	0.748	9.9	A
	weekend	Existing + Development	0.778	10.8	А
	A	Existing	0.599	12.3	А
Pembroke Road	AM	Existing + Development	0.604	12.4	А
and Old Loumoab Road	DM	Existing	0.772	15.9	В
Old Leomedin Kodd	F <i>1</i> V1	Existing + Development	0.792	15.9	В
(Signalised)		Existing	0.579	12.1	А
	weekend	Existing + Development	0.592	12.1	А
	A	Existing	0.631	27.0	В
Pembroke Road	AM	Existing + Development	0.645	27.4	В
and Poso Payton Drivo	DM	Existing	0.748	34.0	С
Kose i dylen blive	PM	Existing + Development	0.801	32.0	С
(Signalised)	W/o olyon -	Existing	0.625	28.3	В
	weekend	Existing + Development	0.636	28.6	С

Table 6: Existing and Development Intersection Performance

It can be seen from **Table 6** that the additional development volumes only cause minor increases in average delay at the intersection of O'Sullivan Road and Pembroke Street. The largest increase in average delay is 2.9 seconds and the intersection operates with spare capacity at a LoS A in all scenarios.

The intersection of Pembroke Road and Old Leumeah Road operates at a LoS A in both existing and development scenarios in the weekday network peak and the weekend network peak and at a LoS B in the weekday evening peak. This intersection operates with spare capacity, the largest increase in average delay being 0.1 seconds.

With respect to the intersection of Pembroke Road and Rose Payten Drive, it is noted that the intersection experiences a change in the level of service from a B to a C during the weekend peak period, however it is recognised that the average delay increases incrementally (increases by 0.3 seconds) therefore the development has minimal impact on the intersection and this is considered acceptable. In all other scenarios, the LoS is maintained between existing and development scenarios, having a LoS B in the weekday morning peak period and a LoS C in the weekday evening peak period. It is noted that the intersection continues to operate with spare capacity and minimal increases to the average delay.

In summary, all intersections experience minor increases in delay and operate with spare capacity. As such, the development is considered supportable from a traffic planning perspective with no external improvements required to facilitate the development.

7. ACCESS AND INTERNAL DESIGN ASPECTS

7.1 Vehicular Access

All vehicular accesses will be designed in accordance with the Australian Standards during the detailed DA stage, however, envisaged to have the following aspects:

7.1.1 O'Sullivan Road Access

This vehicular access is proposed to accommodate 320 car parking spaces (User Class 1A, 2 and 3) with access to O'Sullivan Road, a local road. It will therefore require a Category 4 driveway under AS2890.1 (2004), being a separated entry and exit access with the following aspects and associated minimum widths:

-) 6.0-8.0 metre wide entry driveway;
-) 6.0-8.0 metre wide egress driveway; and
-) 1.0-3.0 metre separation of driveways.

7.1.2 Pembroke Road Access

This vehicular access and associated deceleration lane from Pembroke Road, an RMS main road, currently provides light and heavy vehicle access for the existing development. Accordingly, this vehicular access and deceleration lane are proposed to be retained to accommodate the refuse collection and servicing activities of the development. This is considered acceptable, given the following:

- The proposed development would be able to provide separated access for light and heavy vehicles, which is considered appropriate, given the various components of the proposal (residential, retail and registered club). As such, the provision of separated vehicular accesses would eliminate potential conflicts between light and heavy vehicles at the vehicular accesses;
- The existing vehicular access is able to accommodate light/heavy vehicles, noting a central median along Pembroke Road. As such, all future service vehicles will be physically restricted to left-in and left-out movements;
- Service vehicle movements are anticipated to occur infrequently and outside the peak periods of the surrounding road network;

• The vehicular access serves various existing developments that are anticipated to have a greater traffic generation than that of the servicing demands generated by the proposal. As such, the utilisation of this access is anticipated to have a reduced traffic volume than that of existing developments, as well as assist in minimising any potential queuing (if any) on Pembroke Road.

In light of the above, the proposed retention of the existing Pembroke Road access for service vehicle access of the proposed development is considered appropriate.

7.2 Internal Design

The internal car park will be designed in accordance with AS2890.1 (2004), AS2890.2 (2018) and AS2890.6 (2009) during the detailed DA stage, however, envisaged to have the following characteristics:

7.2.1 Parking Modules

-) All residential, residential visitors and staff car parking spaces are to be designed in accordance with AS2890.1 (2004) User Class 1A, being a minimum width of 2.4 metres and length of 5.4 metres.
-) All club parking spaces are to be designed in accordance with AS2890.1 (2004) User Class 2, being a minimum width of 2.5 metres and length 5.4 metres.
-) All retail parking spaces are to be designed in accordance with AS2890.1 (2004) User Class 3, being a minimum width of 2.6 metres and length of 5.4 metres.
-) Any shared parking spaces with residential visitors, club and/or retail to be designed in accordance with AS2890.1 (2004) User Class 3, being a minimum width of 2.6 metres and length of 5.4 metres.
-) All accessible parking spaces are to be designed in accordance with AS2890.6 (2009), being a minimum width of 2.4 metres, length of 5.4 metres and adjacent shared zone with the same dimensions.
-) All spaces located adjacent to obstructions of greater than 150mm in height are to be provided with an additional width of 300mm.
-) All dead-end aisles are to be provided with the required 1.0 metre aisle extension, as required under AS2890.1 (2004) Figure 2.3.

7.2.2 Ramps

-) The vehicular access is to be provided a maximum gradient of 1 in 20 (5%) for the initial 6.0 metres from the property boundary.
-) All internal ramps are to be provided a maximum gradient of 1 in 5 (20%) and provide gradient transitions at the sag/summit with a maximum gradient of 1 in 8 (12.5%) for a minimum length of 2.0 metres. Note: residential only ramps can provide a maximum gradient of 1 in 4 (25%).

7.2.3 Clear Head Heights

-) A minimum head height clearance of 2.2 metres is to be provided for all trafficable areas, as required under AS2890.1 (2004).
-) A minimum head height clearance of 2.5 metres is to be provided for all accessible spaces and adjacent shared zones, as required under AS2890.6 (2009).
-) A minimum head height clearance of 4.5 metres is to be provided for all trafficable areas of the service vehicle, as required under AS2890.2 (2018).

7.2.4 Other Considerations

-) All loading and servicing areas are to be designed in accordance with AS2890.2 (2018).
-) All columns are to be located outside of the parking space design envelope, as required under AS2890.1 (2004) Figure 5.2.
-) Visual splays are to be provided for egressing drivers at all vehicular accesses, as required under AS2890.1 (2004) Figure 3.3.

7.3 Summary

In summary, the internal configuration of the car park and servicing area will be designed in accordance with AS2890.1 (2004), AS2890.2 (2018) and AS2890.6 (2009) during the detailed DA stage.

8. CONCLUSIONS

In summary:

-) The proposal seeks approval for a mixed-use development at 80 O'Sullivan Road, Leumeah comprising 178 residential dwellings, 790m² GFA ground floor retail, 2,000m² GFA registered club and associated car parking within basement levels.
-) The proposed development was identified to require between 278 to 328 car parking spaces based on applicable parking rates and site-specific parking surveys of the existing registered club. Accordingly, the development proposes a total of 320 car parking spaces, which is considered acceptable. Nevertheless, further assessment of the car parking provision would be conducted during the detailed development application (DA) stage noting a minimum of 278 car parking spaces being applicable with the likely hood of retail, hotel and residential visitors allowing shared use which is considered supportable.
-) The traffic generation arising from the development has been assessed as a net change over existing conditions and equates to the following:
 - +38 vehicle trips per hour in the morning peak period on weekdays;
 - +41 vehicle trips per hour in the evening peak period on weekdays; and
 - +41 vehicle trips per hour during the peak period on weekends.

Accordingly, the above traffic generation was modelled in SIDRA Intersection 9, which identified that all intersections would operate with spare capacity, with minor increases in average delay. As such, the development is considered supportable from a traffic planning perspective with no external improvements required to facilitate the development.

) The vehicular accesses and internal configuration of the car park and servicing area will be designed in accordance with AS2890.1 (2004), AS2890.2 (2018) and AS2890.6 (2009) during the detailed DA stage.

This traffic impact assessment therefore demonstrates that the subject application is supportable on traffic planning grounds. TRAFFIX anticipates an ongoing involvement during the development approval process.

APPENDIX A

Photographic Record

View looking north towards the subject site

View looking north towards the existing access from Pembroke Road

View looking east along Pembroke Road from the existing access

View looking west along Pembroke Road from the existing access

View looking east towards the existing access from O'Sullivan Road

View looking north along O'Sullivan Road from the existing access

View looking south along O'Sullivan Road from the existing access

View looking south towards the Pembroke Road and O'Sullivan Road intersection

View looking northeast towards the Pembroke Road and Old Leumeah Road intersection

View looking southwest towards the Pembroke Road and Rose Payten Drive intersection

APPENDIX B

Reduced Plans

APPENDIX C

SIDRA Outputs

SITE LAYOUT V Site: 101 [101_EXAM_O'Sullivan Rd x Pembroke Rd (Site Folder: General)]

O'Sullivan Road x Pembroke Road x Rudd Road Weekday AM Peak : 8:00am - 9:00am

Site Category: (None) Roundabout

Layout pictures are schematic functional drawings reflecting input data. They are not design drawings.

All Movement Classes

Project: 21.219m01v01 TRAFFIX 80 O'Sullivan Rd, Leumeah Template: Movement Summaries

V Site: 101 [101_EXAM_O'Sullivan Rd x Pembroke Rd (Site Folder: General)]

■ Network: 1 [EXAM (Network Folder: General)]

O'Sullivan Road x Pembroke Road x Rudd Road Weekday AM Peak : 8:00am - 9:00am

Site Category: (None) Roundabout

Vehio	cle Mo	vement	Perfor	manc	e									
Mov ID	Mov Turn DEMAND ID FLOWS [Total HV] veh/h %		AND WS HV]	ARR FLO [Tota	IVAL WS I HV]	Deg. Satn	Aver. Delay	Level of Service	AVERAG OF C [Veh.	GE BACK UEUE Dist]	Prop. Que	Effective A Stop Rate	ver. No. Cycles	Aver. Speed
South		ven/n	% d	ven/n	%	V/C	sec		ven	m				Km/h
South	i. U Suii		u											
1	L2	64	1.6	64	1.6	0.078	7.8	LOS A	0.2	1.6	0.80	0.69	0.80	52.5
2	T1	71	0.0	71	0.0	0.650	14.6	LOS B	3.3	23.5	1.00	1.08	1.36	44.5
3	R2	455	1.2	455	1.2	0.650	19.3	LOS B	3.3	23.5	1.00	1.08	1.36	38.3
3u	U	2	50.0	2	50.0	0.650	24.2	LOS B	3.3	23.5	1.00	1.08	1.36	45.9
Appro	bach	592	1.2	592	1.2	0.650	17.5	LOS B	3.3	23.5	0.98	1.04	1.30	41.2
East:	Pembro	oke Road												
4	L2	199	3.7	199	3.7	0.683	5.2	LOS A	3.1	22.4	0.61	0.53	0.61	51.1
5	T1	699	1.5	699	1.5	0.683	5.3	LOS A	3.1	22.4	0.61	0.53	0.61	52.7
6	R2	8	37.5	8	37.5	0.683	10.8	LOS A	3.1	22.4	0.61	0.53	0.61	43.9
6u	U	5	20.0	5	20.0	0.683	12.5	LOS A	3.1	22.4	0.61	0.53	0.61	42.9
Appro	bach	912	2.4	912	2.4	0.683	5.4	LOS A	3.1	22.4	0.61	0.53	0.61	52.2
North	: O'Sull	ivan Roa	d											
7	L2	4	0.0	4	0.0	0.212	12.6	LOS A	0.6	4.5	0.92	0.91	0.92	35.1
8	T1	59	8.9	59	8.9	0.212	13.4	LOS A	0.6	4.5	0.92	0.91	0.92	46.8
9	R2	29	21.4	29	21.4	0.212	18.8	LOS B	0.6	4.5	0.92	0.91	0.92	46.2
9u	U	1	0.0	1	0.0	0.212	19.6	LOS B	0.6	4.5	0.92	0.91	0.92	45.3
Appro	ach	94	12.4	94	12.4	0.212	15.1	LOS B	0.6	4.5	0.92	0.91	0.92	46.3
West:	Rudd I	Road												
10	L2	56	9.4	56	9.4	0.808	16.4	LOS B	5.0	35.7	1.00	1.17	1.52	44.5
11	T1	556	0.8	556	0.8	0.808	16.2	LOS B	5.0	35.7	1.00	1.17	1.52	39.7
12	R2	32	3.3	32	3.3	0.808	20.9	LOS B	5.0	35.7	1.00	1.17	1.52	47.8
12u	U	1	0.0	1	0.0	0.808	22.8	LOS B	5.0	35.7	1.00	1.17	1.52	48.7
Appro	bach	644	1.6	644	1.6	0.808	16.4	LOS B	5.0	35.7	1.00	1.17	1.52	40.8
All Ve	hicles	2241	2.3	2241	2.3	0.808	12.2	LOS A	5.0	35.7	0.83	0.86	1.07	45.9

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Network Data dialog (Network tab). Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Roundabout Capacity Model: SIDRA Standard.

Delay Model: SIDRA Standard (Geometric Delay is included).

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

All Movement Classes

Project: 21.219m01v01 TRAFFIX 80 O'Sullivan Rd, Leumeah Template: Movement Summaries

Site: 102 [102_EXPM_O'Sullivan Rd x Pembroke Rd (Site Folder: General)]

■ Network: 2 [EXPM (Network Folder: General)]

O'Sullivan Road x Pembroke Road x Rudd Road Weekday PM Peak : 4:45pm - 5:45pm

Site Category: (None) Roundabout

Vehicle Movement Performance														
Mov	Turn	DEM		ARRI	IVAL	Deg.	Aver.	Level of	AVERA		Prop.	Effective A	ver. No.	Aver.
שו		Total	WS HV1	Total	vvS ⊢HV1	Saur	Delay	Service	[Veh	Dist 1	Que	Rate	Cycles	Speed
		veh/h	%	veh/h	%	v/c	sec		veh	m		rtato		km/h
South	: O'Sull	livan Roa	ad											
1	L2	62	6.8	62	6.8	0.086	8.1	LOS A	0.3	2.0	0.86	0.72	0.86	52.2
2	T1	82	1.3	82	1.3	0.577	13.0	LOS A	2.6	18.6	1.00	1.02	1.22	45.8
3	R2	324	2.3	324	2.3	0.577	17.7	LOS B	2.6	18.6	1.00	1.02	1.22	39.8
3u	U	5	0.0	5	0.0	0.577	19.7	LOS B	2.6	18.6	1.00	1.02	1.22	48.6
Appro	ach	474	2.7	474	2.7	0.577	15.6	LOS B	2.6	18.6	0.98	0.98	1.17	43.2
East:	Pembro	oke Road	ł											
4	L2	388	2.4	388	2.4	0.929	16.2	LOS B	10.1	71.4	1.00	1.05	1.51	44.3
5	T1	648	0.6	648	0.6	0.929	16.3	LOS B	10.1	71.4	1.00	1.05	1.51	45.4
6	R2	23	4.5	23	4.5	0.929	21.1	LOS B	10.1	71.4	1.00	1.05	1.51	41.6
6u	U	4	0.0	4	0.0	0.929	23.0	LOS B	10.1	71.4	1.00	1.05	1.51	32.0
Appro	ach	1064	1.4	1064	1.4	0.929	16.4	LOS B	10.1	71.4	1.00	1.05	1.51	44.9
North	: O'Sulli	ivan Roa	d											
7	L2	14	0.0	14	0.0	0.468	16.3	LOS B	1.6	11.6	1.00	1.07	1.18	31.7
8	T1	98	0.0	98	0.0	0.468	16.6	LOS B	1.6	11.6	1.00	1.07	1.18	44.3
9	R2	94	9.0	94	9.0	0.468	21.8	LOS B	1.6	11.6	1.00	1.07	1.18	44.0
9u	U	1	100.0	1	100. 0	0.468	30.9	LOS C	1.6	11.6	1.00	1.07	1.18	30.7
Appro	ach	206	4.6	206	4.6	0.468	19.0	LOS B	1.6	11.6	1.00	1.07	1.18	43.6
West:	Rudd F	Road												
10	L2	74	10.0	74	10.0	0.862	16.9	LOS B	6.6	47.2	1.00	1.17	1.59	44.0
11	T1	643	1.3	643	1.3	0.862	16.7	LOS B	6.6	47.2	1.00	1.17	1.59	39.1
12	R2	65	0.0	65	0.0	0.862	21.3	LOS B	6.6	47.2	1.00	1.17	1.59	47.4
12u	U	1	100.0	1	100. 0	0.862	29.0	LOS C	6.6	47.2	1.00	1.17	1.59	45.2
Appro	bach	783	2.2	783	2.2	0.862	17.1	LOS B	6.6	47.2	1.00	1.17	1.59	40.7
All Ve	hicles	2527	2.1	2527	2.1	0.929	16.7	LOS B	10.1	71.4	1.00	1.07	1.44	43.3

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Network Data dialog (Network tab). Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Roundabout Capacity Model: SIDRA Standard.

Delay Model: SIDRA Standard (Geometric Delay is included).

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

All Movement Classes

Project: 21.219m01v01 TRAFFIX 80 O'Sullivan Rd, Leumeah Template: Movement Summaries

V Site: 103 [103_EXSAT_O'Sullivan Rd x Pembroke Rd (Site Folder: General)]

■ Network: 3 [EXSAT (Network Folder: General)]

O'Sullivan Road x Pembroke Road x Rudd Road Weekend Sat Peak :11:00am - 12:00am

Site Category: (None) Roundabout

Vehio	cle Mo	vement	Perfor	mance	•									
Mov	Turn	DEMA	ND	ARRI	VAL	Deg.	Aver.	Level of	AVERA	GE BACK	Prop.	Effective A	ver. No.	Aver.
ID		FLO\	NS	FLO	WS	Satn	Delay	Service	OF C		Que	Stop	Cycles	Speed
		veh/h	⊓vj %	veh/h	пvј %	v/c	sec		veh	m		Nale		km/h
South	: O'Sull	livan Roa	d											
1	L2	83	0.0	83	0.0	0.106	8.1	LOS A	0.3	2.3	0.84	0.73	0.84	52.4
2	T1	78	0.0	78	0.0	0.475	10.6	LOS A	1.8	12.8	0.98	0.93	1.05	47.6
3	R2	284	0.7	284	0.7	0.475	15.2	LOS B	1.8	12.8	0.98	0.93	1.05	41.9
3u	U	1	0.0	1	0.0	0.475	17.3	LOS B	1.8	12.8	0.98	0.93	1.05	50.2
Appro	ach	446	0.5	446	0.5	0.475	13.1	LOS A	1.8	12.8	0.95	0.89	1.01	45.6
East:	Pembro	oke Road												
4	12	191	0.6	191	0.6	0.731	6.7	LOSA	3.6	25.5	0.77	0.67	0.81	50.4
5	T1	684	0.8	684	0.8	0.731	6.9	LOSA	3.6	25.5	0.77	0.67	0.81	51.9
6	R2	12	0.0	12	0.0	0.731	11.5	LOSA	3.6	25.5	0.77	0.67	0.81	49.8
6u	U	5	0.0	5	0.0	0.731	13.6	LOSA	3.6	25.5	0.77	0.67	0.81	41.5
Appro	bach	892	0.7	892	0.7	0.731	7.0	LOS A	3.6	25.5	0.77	0.67	0.81	51.5
North	: O'Sull	ivan Road	b											
7	L2	4	0.0	4	0.0	0.270	11.0	LOS A	0.8	5.6	0.91	0.91	0.91	36.4
8	T1	63	0.0	63	0.0	0.270	11.2	LOS A	0.8	5.6	0.91	0.91	0.91	47.9
9	R2	73	7.2	73	7.2	0.270	16.2	LOS B	0.8	5.6	0.91	0.91	0.91	47.6
9u	U	1	0.0	1	0.0	0.270	17.9	LOS B	0.8	5.6	0.91	0.91	0.91	46.3
Appro	ach	141	3.7	141	3.7	0.270	13.9	LOS A	0.8	5.6	0.91	0.91	0.91	47.5
West:	Rudd I	Road												
10	L2	78	5.4	78	5.4	0.748	10.4	LOS A	4.1	29.1	0.94	0.93	1.17	48.5
11	T1	580	0.5	580	0.5	0.748	10.4	LOS A	4.1	29.1	0.94	0.93	1.17	44.8
12	R2	75	0.0	75	0.0	0.748	15.0	LOS B	4.1	29.1	0.94	0.93	1.17	51.5
12u	U	1	0.0	1	0.0	0.748	17.1	LOS B	4.1	29.1	0.94	0.93	1.17	52.5
Appro	bach	734	1.0	734	1.0	0.748	10.9	LOS A	4.1	29.1	0.94	0.93	1.17	46.3
All Ve	hicles	2213	1.0	2213	1.0	0.748	9.9	LOS A	4.1	29.1	0.87	0.82	0.98	48.5

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Network Data dialog (Network tab). Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Roundabout Capacity Model: SIDRA Standard.

Delay Model: SIDRA Standard (Geometric Delay is included).

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

All Movement Classes

Project: 21.219m01v01 TRAFFIX 80 O'Sullivan Rd, Leumeah Template: Movement Summaries

V Site: 104 [104_PRAM_O'Sullivan Rd x Pembroke Rd (Site Folder: General)]

■ Network: 4 [PRAM (Network Folder: General)]

O'Sullivan Road x Pembroke Road x Rudd Road

Weekday AM Peak : 8:00am - 9:00am

Site Category: (None) Roundabout

Vehic	cle Mo	vement	Perfor	manc	e									
Mov Turn DEMAND ID FLOWS [Total HV] veh/h %		AND WS HV]	ARRI FLO [Total	IVAL WS I HV]	Deg. Satn	Aver. Delay	Level of Service	AVERAC OF Q [Veh.	GE BACK UEUE Dist]	Prop. Que	Effective A Stop Rate	ver. No. Cycles	Aver. Speed	
South	: O'Sull	livan Roa	nd	ven/11	/0		300		Ven					KIII/11
1	10	64	16	64	16	0.090	7.0	1084	0.2	17	0.91	0.70	0.91	52 F
ו ס	LZ T1	04 72	1.0	70	0.0	0.000	1.9		0.2	1.7 25.4	1 00	0.70	1 41	12.0
2	11 D2	12	1.0	12	1.2	0.072	20.5		3.0	25.4	1.00	1.11	1.41	43.0
3	112	400	50.0	400	50.0	0.072	20.5		3.0	25.4	1.00	1.11	1.41	J7.4
Appro	o o o o o o o o o o o o o o o o o o o	503	1.2	503	1 2	0.672	19.6		3.6	25.4	0.08	1.11	1.41	40.4
Аррго	acri	595	1.2	595	1.2	0.072	10.0	L03 B	3.0	20.4	0.90	1.00	1.55	40.4
East:	Pembro	oke Road	ł											
4	L2	199	3.7	199	3.7	0.701	5.3	LOS A	3.3	23.5	0.66	0.55	0.66	50.9
5	T1	699	1.5	699	1.5	0.701	5.5	LOS A	3.3	23.5	0.66	0.55	0.66	52.4
6	R2	17	18.8	17	18.8	0.701	10.5	LOS A	3.3	23.5	0.66	0.55	0.66	46.9
6u	U	5	20.0	5	20.0	0.701	12.6	LOS A	3.3	23.5	0.66	0.55	0.66	42.5
Appro	ach	920	2.4	920	2.4	0.701	5.6	LOS A	3.3	23.5	0.66	0.55	0.66	52.0
North	: O'Sulli	ivan Roa	d											
7	L2	21	0.0	21	0.0	0.271	12.9	LOS A	0.8	5.8	0.93	0.94	0.93	34.8
8	T1	60	8.8	60	8.8	0.271	13.6	LOS A	0.8	5.8	0.93	0.94	0.93	46.7
9	R2	40	15.8	40	15.8	0.271	18.7	LOS B	0.8	5.8	0.93	0.94	0.93	46.3
9u	U	1	0.0	1	0.0	0.271	19.8	LOS B	0.8	5.8	0.93	0.94	0.93	45.1
Appro	ach	122	9.5	122	9.5	0.271	15.2	LOS B	0.8	5.8	0.93	0.94	0.93	45.3
West:	Rudd F	Road												
10	L2	61	8.6	61	8.6	0.822	17.3	LOS B	5.3	37.7	1.00	1.20	1.58	43.8
11	T1	556	0.8	556	0.8	0.822	17.2	LOS B	5.3	37.7	1.00	1.20	1.58	38.8
12	R2	32	3.3	32	3.3	0.822	21.9	LOS B	5.3	37.7	1.00	1.20	1.58	47.2
12u	U	1	0.0	1	0.0	0.822	23.9	LOS B	5.3	37.7	1.00	1.20	1.58	48.0
Appro	bach	649	1.6	649	1.6	0.822	17.4	LOS B	5.3	37.7	1.00	1.20	1.58	40.1
All Ve	hicles	2284	2.3	2284	2.3	0.822	12.8	LOS A	5.3	37.7	0.85	0.89	1.11	45.3

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Network Data dialog (Network tab). Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Roundabout Capacity Model: SIDRA Standard.

Delay Model: SIDRA Standard (Geometric Delay is included).

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

All Movement Classes

Project: 21.219m01v01 TRAFFIX 80 O'Sullivan Rd, Leumeah Template: Movement Summaries

Site: 105 [105_PRPM_O'Sullivan Rd x Pembroke Rd (Site Folder: General)]

■ Network: 5 [PRPM (Network Folder: General)]

O'Sullivan Road x Pembroke Road x Rudd Road Weekday PM Peak : 4:45pm - 5:45pm

Site Category: (None) Roundabout

Vehicle Movement Performance														
Mov ID	Turn	DEM/ FLO	AND WS	ARRI FLO	VAL WS	Deg. Satn	Aver. Delay	Level of Service	AVERAG OF Q	GE BACK UEUE	Prop. Que	Effective A Stop	ver. No. Cycles	Aver. Speed
		veh/h_	_Hv_j %	veh/h	~~	v/c	sec		ven. veh	m		Rate		km/h
South	: O'Sul	livan Roa	d											
1	L2	62	6.8	62	6.8	0.087	8.2	LOS A	0.3	2.0	0.86	0.72	0.86	52.2
2	T1	84	1.3	84	1.3	0.599	14.2	LOS A	2.8	20.1	1.00	1.04	1.27	45.0
3	R2	324	2.3	324	2.3	0.599	18.9	LOS B	2.8	20.1	1.00	1.04	1.27	38.8
3u	U	5	0.0	5	0.0	0.599	20.8	LOS B	2.8	20.1	1.00	1.04	1.27	47.9
Appro	bach	476	2.7	476	2.7	0.599	16.7	LOS B	2.8	20.1	0.98	1.00	1.21	42.4
East:	Pembro	oke Road	ł											
4	L2	388	2.4	388	2.4	0.953	19.7	LOS B	12.0	84.7	1.00	1.14	1.68	42.0
5	T1	648	0.6	648	0.6	0.953	19.8	LOS B	12.0	84.7	1.00	1.14	1.68	43.0
6	R2	44	2.4	44	2.4	0.953	24.5	LOS B	12.0	84.7	1.00	1.14	1.68	39.3
6u	U	4	0.0	4	0.0	0.953	26.5	LOS B	12.0	84.7	1.00	1.14	1.68	29.1
Appro	bach	1085	1.4	1085	1.4	0.953	20.0	LOS B	12.0	84.7	1.00	1.14	1.68	42.5
North	: O'Sull	ivan Roa	d											
7	L2	23	0.0	23	0.0	0.504	17.5	LOS B	1.8	13.0	1.00	1.09	1.24	30.7
8	T1	99	0.0	99	0.0	0.504	17.7	LOS B	1.8	13.0	1.00	1.09	1.24	43.6
9	R2	100	8.4	100	8.4	0.504	22.9	LOS B	1.8	13.0	1.00	1.09	1.24	43.3
9u	U	1	100.0	1	100. 0	0.504	32.2	LOS C	1.8	13.0	1.00	1.09	1.24	30.3
Appro	bach	223	4.2	223	4.2	0.504	20.1	LOS B	1.8	13.0	1.00	1.09	1.24	42.6
West:	Rudd I	Road												
10	L2	86	8.5	86	8.5	0.893	20.3	LOS B	7.8	55.3	1.00	1.27	1.79	41.9
11	T1	643	1.3	643	1.3	0.893	20.2	LOS B	7.8	55.3	1.00	1.27	1.79	36.5
12	R2	65	0.0	65	0.0	0.893	24.7	LOS B	7.8	55.3	1.00	1.27	1.79	45.4
12u	U	1	100.0	1	100. 0	0.893	32.8	LOS C	7.8	55.3	1.00	1.27	1.79	43.4
Appro	bach	796	2.1	796	2.1	0.893	20.6	LOS B	7.8	55.3	1.00	1.27	1.79	38.3
All Vehicles		2580	2.1	2580	2.1	0.953	19.6	LOS B	12.0	84.7	1.00	1.15	1.59	41.3

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Network Data dialog (Network tab). Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Roundabout Capacity Model: SIDRA Standard.

Delay Model: SIDRA Standard (Geometric Delay is included).

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

All Movement Classes

Project: 21.219m01v01 TRAFFIX 80 O'Sullivan Rd, Leumeah Template: Movement Summaries

V Site: 106 [106_PRSAT_O'Sullivan Rd x Pembroke Rd (Site Folder: General)]

■ Network: 6 [PRSAT (Network Folder: General)]

O'Sullivan Road x Pembroke Road x Rudd Road Weekend Sat Peak :11:00am - 12:00am

Site Category: (None) Roundabout

Vehio	cle Mo	vement	Perfor	mance	•									
Mov	Turn	DEMA	ND	ARRI	VAL	Deg.	Aver.	Level of	AVERA	GE BACK	Prop.	Effective A	ver. No.	Aver.
ID		FLO\	NS	FLO	WS	Satn	Delay	Service	OF C		Que	Stop	Cycles	Speed
		veh/h	пvј %	veh/h	пvј %	v/c	sec		veh	m Dist		Rale		km/h
South	: O'Sull	livan Roa	d											
1	L2	83	0.0	83	0.0	0.108	8.1	LOS A	0.3	2.4	0.85	0.73	0.85	52.4
2	T1	80	0.0	80	0.0	0.499	11.5	LOS A	2.0	14.1	1.00	0.96	1.12	46.9
3	R2	284	0.7	284	0.7	0.499	16.2	LOS B	2.0	14.1	1.00	0.96	1.12	41.1
3u	U	1	0.0	1	0.0	0.499	18.2	LOS B	2.0	14.1	1.00	0.96	1.12	49.6
Appro	ach	448	0.5	448	0.5	0.499	13.9	LOS A	2.0	14.1	0.97	0.92	1.07	45.0
East:	Pembro	oke Road												
4	12	191	0.6	191	0.6	0.755	7.2	LOSA	4.0	28.5	0.81	0.70	0.88	50.1
5	 T1	684	0.8	684	0.8	0.755	7.4	LOSA	4.0	28.5	0.81	0.70	0.88	51.6
6	R2	33	0.0	33	0.0	0.755	12.0	LOSA	4.0	28.5	0.81	0.70	0.88	49.5
6u	U	5	0.0	5	0.0	0.755	14.1	LOSA	4.0	28.5	0.81	0.70	0.88	41.1
Appro	ou U 5 0.0 Approach 913 0.7		913	0.7	0.755	7.6	LOS A	4.0	28.5	0.81	0.70	0.88	51.2	
North	: O'Sull	ivan Road	ł											
7	L2	14	0.0	14	0.0	0.305	11.1	LOS A	0.9	6.4	0.93	0.93	0.93	36.3
8	T1	64	0.0	64	0.0	0.305	11.3	LOS A	0.9	6.4	0.93	0.93	0.93	47.8
9	R2	79	6.7	79	6.7	0.305	16.3	LOS B	0.9	6.4	0.93	0.93	0.93	47.6
9u	U	1	0.0	1	0.0	0.305	18.0	LOS B	0.9	6.4	0.93	0.93	0.93	46.3
Appro	ach	158	3.3	158	3.3	0.305	13.9	LOS A	0.9	6.4	0.93	0.93	0.93	47.1
West:	Rudd I	Road												
10	L2	91	4.7	91	4.7	0.778	11.6	LOS A	4.6	32.6	0.98	1.00	1.28	47.6
11	T1	580	0.5	580	0.5	0.778	11.7	LOS A	4.6	32.6	0.98	1.00	1.28	43.5
12	R2	75	0.0	75	0.0	0.778	16.3	LOS B	4.6	32.6	0.98	1.00	1.28	50.7
12u	U	1	0.0	1	0.0	0.778	18.4	LOS B	4.6	32.6	0.98	1.00	1.28	51.5
Appro	bach	746	1.0	746	1.0	0.778	12.2	LOS A	4.6	32.6	0.98	1.00	1.28	45.2
All Ve	hicles	2265	0.9	2265	0.9	0.778	10.8	LOS A	4.6	32.6	0.90	0.86	1.05	47.8

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Network Data dialog (Network tab). Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Roundabout Capacity Model: SIDRA Standard.

Delay Model: SIDRA Standard (Geometric Delay is included).

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

SITE LAYOUT Site: 201 [201_EXAM_Pembroke Rd x Old Leumeah Rd (Site Folder: General)]

Pembroke Road x Old Leumeah Road Weekday AM Peak : 8:00am - 9:00am Site Category: (None) Signals - EQUISAT (Fixed-Time/SCATS) Isolated

Layout pictures are schematic functional drawings reflecting input data. They are not design drawings.

Pembroke Road

SIDRA INTERSECTION 9.0 | Copyright © 2000-2020 Akcelik and Associates Pty Ltd | sidrasolutions.com Organisation: TRAFFIX PTY LTD | Licence: NETWORK / 1PC | Created: Thursday, 8 July 2021 3:43:32 PM Project: T:\Synergy\Projects\21\21.219\Modelling\21.219m01v01 TRAFFIX 80 O'Sullivan Rd, Leumeah.sip9

Site: 201 [201_EXAM_Pembroke Rd x Old Leumeah Rd (Site Folder: General)]

Pembroke Road x Old Leumeah Road Weekday AM Peak : 8:00am - 9:00am Site Category: (None) Signals - EQUISAT (Fixed-Time/SCATS) Coordinated Cycle Time = 120 seconds (Network Optimum Cycle Time -Minimum Delay)

Timings based on settings in the Network Timing dialog Phase Times determined by the program Downstream lane blockage effects included in determining phase times Phase Sequence: SCATS Reference Phase: Phase A Input Phase Sequence: A, B*, C, D* Output Phase Sequence: A, C, D* (* Variable Phase)

Vehio	cle Mo	vement	Perfor	mance	9									
Mov ID	Turn	DEMA FLOV [Total veh/h	ND VS HV] %	ARRI FLO [Total veh/h	VAL WS HV] %	Deg. Satn v/c	Aver. Delay sec	Level of Service	AVERA OF C [Veh. veh	GE BACK QUEUE Dist] m	Prop. Que	Effective A Stop Rate	ver. No. Cycles	Aver. Speed km/h
East:	Pembro	oke Road												
5	T1	913	2.0	913	2.0	* 0.599	1.3	LOS A	3.2	23.1	0.11	0.10	0.11	57.0
6	R2	168	9.4	168	9.4	0.325	12.5	LOS A	1.6	11.9	0.45	0.70	0.45	43.1
Appro	bach	1081	3.1	1081	3.1	0.599	3.0	LOS A	3.2	23.1	0.16	0.20	0.16	53.1
North	: Old Le	eumeah R	load											
7	L2	128	6.6	128	6.6	0.204	34.1	LOS C	3.2	23.4	0.73	0.75	0.73	18.7
9	R2	22	0.0	22	0.0	* 0.104	57.5	LOS E	0.7	5.1	0.93	0.71	0.93	12.6
Appro	bach	151	5.6	151	5.6	0.204	37.5	LOS C	3.2	23.4	0.76	0.75	0.76	17.4
West:	Pembr	oke Road	1											
10	L2	28	3.7	28	3.7	0.499	23.3	LOS B	11.5	81.7	0.67	0.61	0.67	36.8
11	T1	1017	1.0	1017	1.0	0.499	18.0	LOS B	11.5	81.7	0.67	0.61	0.67	29.7
Appro	bach	1045	1.1	1045	1.1	0.499	18.2	LOS B	11.5	81.7	0.67	0.61	0.67	30.0
All Ve	hicles	2277	2.4	2277	2.4	0.599	12.3	LOS A	11.5	81.7	0.44	0.42	0.44	38.4

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Network Data dialog (Network tab). Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Delay Model: SIDRA Standard (Geometric Delay is included).

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Site: 202 [202_EXPM_Pembroke Rd x Old Leumeah Rd (Site Folder: General)]

Pembroke Road x Old Leumeah Road Weekday PM Peak : 4:45pm - 5:45pm Site Category: (None) Signals - EQUISAT (Fixed-Time/SCATS) Coordinated Cycle Time = 130 seconds (Network Optimum Cycle Time -Minimum Delay)

Timings based on settings in the Network Timing dialog Phase Times determined by the program Downstream lane blockage effects included in determining phase times Phase Sequence: SCATS Reference Phase: Phase A Input Phase Sequence: A, B*, C, D* Output Phase Sequence: A, C, D* (* Variable Phase)

Vehio	cle Mo	vement	Perfor	mance	e									
Mov ID	Turn	DEMA FLOV [Total veh/h	ND VS HV] %	ARRI FLO [Total veh/h	VAL WS HV] %	Deg. Satn v/c	Aver. Delay sec	Level of Service	AVERAC OF Q [Veh. veh	GE BACK UEUE Dist] m	Prop. Que	Effective A Stop Rate	ver. No. Cycles	Aver. Speed km/h
East:	Pembro	oke Road												
5	T1	996	1.2	996	1.2	* 0.772	4.2	LOS A	10.9	77.3	0.32	0.29	0.32	51.3
6	R2	224	3.8	224	3.8	0.356	14.8	LOS B	3.5	25.2	0.67	0.77	0.67	41.9
Appro	bach	1220	1.6	1220	1.6	0.772	6.2	LOS A	10.9	77.3	0.38	0.38	0.38	48.4
North	: Old Le	eumeah R	load											
7	L2	128	5.7	128	5.7	0.178	31.7	LOS C	3.1	23.1	0.68	0.74	0.68	19.6
9	R2	61	1.7	61	1.7	*0.293	63.6	LOS E	2.2	15.8	0.96	0.76	0.96	11.6
Appro	bach	189	4.4	189	4.4	0.293	42.0	LOS C	3.1	23.1	0.77	0.75	0.77	16.0
West:	Pembr	oke Road	I											
10	L2	46	0.0	46	0.0	0.507	28.0	LOS B	12.5	88.8	0.71	0.65	0.71	34.0
11	T1	929	1.9	929	1.9	0.507	22.8	LOS B	12.5	88.8	0.72	0.65	0.72	26.2
Appro	bach	976	1.8	976	1.8	0.507	23.0	LOS B	12.5	88.8	0.72	0.65	0.72	26.7
All Ve	hicles	2385	1.9	2385	1.9	0.772	15.9	LOS B	12.5	88.8	0.55	0.52	0.55	35.1

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Network Data dialog (Network tab).

Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Delay Model: SIDRA Standard (Geometric Delay is included).

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Site: 203 [203_EXSAT_Pembroke Rd x Old Leumeah Rd (Site Folder: General)]

Pembroke Road x Old Leumeah Road Weekend Sat Peak :11:00am - 12:00am Site Category: (None) Signals - EQUISAT (Fixed-Time/SCATS) Coordinated Cycle Time = 120 seconds (Network Optimum Cycle Time -Minimum Delay)

Timings based on settings in the Network Timing dialog Phase Times determined by the program Downstream lane blockage effects included in determining phase times Phase Sequence: SCATS Reference Phase: Phase A Input Phase Sequence: A, B*, C, D* Output Phase Sequence: A, C, D* (* Variable Phase)

Vehic	cle Mo	vement	Perfor	mance	e									
Mov ID	Turn	DEMA FLOV [Total veh/h	ND VS HV] %	ARRI FLO [Total veh/h	VAL WS HV] %	Deg. Satn v/c	Aver. Delay sec	Level of Service	AVERAC OF C [Veh. veh	GE BACK UEUE Dist] m	Prop. Que	Effective A Stop Rate	ver. No. Cycles	Aver. Speed km/h
East:	Pembro	oke Road												
5	T1	889	0.6	889	0.6	* 0.579	1.2	LOS A	3.0	21.2	0.11	0.10	0.11	57.1
6	R2	168	3.1	168	3.1	0.277	11.4	LOS A	1.3	9.3	0.41	0.69	0.41	44.6
Appro	ach	1058	1.0	1058	1.0	0.579	2.9	LOS A	3.0	21.2	0.15	0.19	0.15	53.7
North	Old Le	eumeah R	load											
7	L2	120	3.5	120	3.5	0.178	32.3	LOS C	2.9	20.6	0.71	0.74	0.71	19.3
9	R2	29	0.0	29	0.0	*0.138	57.8	LOS E	1.0	6.8	0.93	0.72	0.93	12.5
Appro	ach	149	2.8	149	2.8	0.178	37.3	LOS C	2.9	20.6	0.75	0.74	0.75	17.5
West:	Pembr	oke Road	I											
10	L2	41	0.0	41	0.0	0.447	23.7	LOS B	9.9	69.9	0.66	0.60	0.66	36.8
11	T1	868	0.7	868	0.7	0.447	18.5	LOS B	9.9	69.9	0.66	0.60	0.66	29.3
Appro	ach	909	0.7	909	0.7	0.447	18.7	LOS B	9.9	69.9	0.66	0.60	0.66	29.8
All Ve	hicles	2117	1.0	2117	1.0	0.579	12.1	LOS A	9.9	69.9	0.41	0.40	0.41	38.8

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Network Data dialog (Network tab). Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Delay Model: SIDRA Standard (Geometric Delay is included).

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Site: 204 [204_PRAM_Pembroke Rd x Old Leumeah Rd (Site Folder: General)]

Pembroke Road x Old Leumeah Road Weekday AM Peak : 8:00am - 9:00am Site Category: (None) Signals - EQUISAT (Fixed-Time/SCATS) Coordinated Cycle Time = 120 seconds (Network Optimum Cycle Time -Minimum Delay)

Timings based on settings in the Network Timing dialog Phase Times determined by the program Downstream lane blockage effects included in determining phase times Phase Sequence: SCATS Reference Phase: Phase A Input Phase Sequence: A, B*, C, D* Output Phase Sequence: A, C, D* (* Variable Phase)

Vehio	cle Mo	vement	Perfor	mance	•									
Mov ID	Turn	DEMA FLOV [Total veh/h	ND VS HV] %	ARRI FLO [Total veh/h	VAL WS HV] %	Deg. Satn v/c	Aver. Delay sec	Level of Service	AVERAC OF Q [Veh. veh	GE BACK UEUE Dist] m	Prop. Que	Effective A Stop Rate	ver. No. Cycles	Aver. Speed km/h
East:	Pembro	oke Road												
5	T1	921	1.9	921	1.9	* 0.604	1.4	LOS A	3.5	25.1	0.12	0.11	0.12	56.8
6	R2	168	9.4	168	9.4	0.328	13.0	LOS A	1.7	12.9	0.49	0.71	0.49	42.6
Appro	bach	1089	3.1	1089	3.1	0.604	3.2	LOS A	3.5	25.1	0.18	0.20	0.18	52.9
North	: Old Le	eumeah R	load											
7	L2	128	6.6	128	6.6	0.204	34.1	LOS C	3.2	23.4	0.73	0.75	0.73	18.7
9	R2	22	0.0	22	0.0	* 0.104	57.5	LOS E	0.7	5.1	0.93	0.71	0.93	12.6
Appro	bach	151	5.6	151	5.6	0.204	37.5	LOS C	3.2	23.4	0.76	0.75	0.76	17.4
West:	Pembr	oke Road	1											
10	L2	28	3.7	28	3.7	0.507	23.4	LOS B	11.8	83.5	0.67	0.61	0.67	36.8
11	T1	1034	1.0	1034	1.0	0.507	18.1	LOS B	11.8	83.5	0.68	0.61	0.68	29.6
Appro	bach	1062	1.1	1062	1.1	0.507	18.3	LOS B	11.8	83.5	0.68	0.61	0.68	29.9
All Ve	hicles	2302	2.3	2302	2.3	0.604	12.4	LOS A	11.8	83.5	0.44	0.43	0.44	38.2

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Network Data dialog (Network tab).

Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Delay Model: SIDRA Standard (Geometric Delay is included).

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Site: 205 [205_PRPM_Pembroke Rd x Old Leumeah Rd (Site Folder: General)]

Pembroke Road x Old Leumeah Road Weekday PM Peak : 4:45pm - 5:45pm Site Category: (None) Signals - EQUISAT (Fixed-Time/SCATS) Coordinated Cycle Time = 120 seconds (Network Optimum Cycle Time -Minimum Delay)

Timings based on settings in the Network Timing dialog Phase Times determined by the program Downstream lane blockage effects included in determining phase times Phase Sequence: SCATS Reference Phase: Phase A Input Phase Sequence: A, B*, C, D* Output Phase Sequence: A, C, D* (* Variable Phase)

Vehio	cle Mo	vement l	Perfor	mance	9									
Mov ID	Turn	DEMA FLOV [Total veh/h	.ND VS HV] %	ARRI FLO [Total veh/h	VAL WS HV] %	Deg. Satn v/c	Aver. Delay sec	Level of Service	AVERA OF C [Veh. veh	GE BACK QUEUE Dist] m	Prop. Que	Effective A Stop Rate	ver. No. Cycles	Aver. Speed km/h
East:	Pembro	oke Road												
5	T1	1017	1.1	1017	1.1	*0.792	5.4	LOS A	14.6	102.9	0.45	0.42	0.45	49.3
6	R2	224	3.8	224	3.8	0.362	16.7	LOS B	3.8	27.8	0.80	0.81	0.80	40.5
Appro	bach	1241	1.6	1241	1.6	0.792	7.4	LOS A	14.6	102.9	0.51	0.49	0.51	46.7
North	: Old Le	eumeah R	oad											
7	L2	128	5.7	128	5.7	0.178	29.7	LOS C	2.9	21.3	0.67	0.74	0.67	20.5
9	R2	61	1.7	61	1.7	*0.290	59.2	LOS E	2.1	14.6	0.95	0.76	0.95	12.3
Appro	bach	189	4.4	189	4.4	0.290	39.2	LOS C	2.9	21.3	0.76	0.74	0.76	16.9
West:	Pembr	oke Road												
10	L2	46	0.0	46	0.0	0.520	27.1	LOS B	11.9	84.6	0.73	0.66	0.73	34.6
11	T1	939	1.9	939	1.9	0.520	21.8	LOS B	11.9	84.6	0.73	0.66	0.73	26.8
Appro	bach	985	1.8	985	1.8	0.520	22.1	LOS B	11.9	84.6	0.73	0.66	0.73	27.3
All Ve	hicles	2416	1.9	2416	1.9	0.792	15.9	LOS B	14.6	102.9	0.62	0.58	0.62	35.2

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Network Data dialog (Network tab).

Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Delay Model: SIDRA Standard (Geometric Delay is included).

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Site: 206 [206_PRSAT_Pembroke Rd x Old Leumeah Rd (Site Folder: General)]

Pembroke Road x Old Leumeah Road Weekend Sat Peak :11:00am - 12:00am Site Category: (None) Signals - EQUISAT (Fixed-Time/SCATS) Coordinated Cycle Time = 120 seconds (Network Optimum Cycle Time -Minimum Delay)

Timings based on settings in the Network Timing dialog Phase Times determined by the program Downstream lane blockage effects included in determining phase times Phase Sequence: SCATS Reference Phase: Phase A Input Phase Sequence: A, B*, C, D* Output Phase Sequence: A, C, D* (* Variable Phase)

Vehic	cle Mo [,]	vement	Perfor	mance	e									
Mov ID	Turn	DEMA FLOV [Total veh/h	ND VS HV] %	ARRI FLO [Total veh/h	VAL WS HV] %	Deg. Satn v/c	Aver. Delay sec	Level of Service	AVERA OF C [Veh. veh	GE BACK QUEUE Dist] m	Prop. Que	Effective A Stop Rate	ver. No. Cycles	Aver. Speed km/h
East:	Pembro	oke Road												
5	T1	911	0.6	911	0.6	* 0.592	1.3	LOS A	3.4	23.6	0.11	0.11	0.11	56.9
6	R2	168	3.1	168	3.1	0.279	11.7	LOS A	1.4	9.8	0.43	0.69	0.43	44.4
Appro	ach	1079	1.0	1079	1.0	0.592	3.0	LOS A	3.4	23.6	0.16	0.20	0.16	53.5
North	: Old Le	eumeah R	load											
7	L2	120	3.5	120	3.5	0.178	32.3	LOS C	2.9	20.6	0.71	0.74	0.71	19.3
9	R2	29	0.0	29	0.0	*0.138	57.8	LOS E	1.0	6.8	0.93	0.72	0.93	12.5
Appro	ach	149	2.8	149	2.8	0.178	37.3	LOS C	2.9	20.6	0.75	0.74	0.75	17.5
West:	Pembr	oke Road	I											
10	L2	41	0.0	41	0.0	0.451	23.8	LOS B	10.1	70.9	0.66	0.60	0.66	36.7
11	T1	878	0.7	878	0.7	0.451	18.5	LOS B	10.1	70.9	0.66	0.60	0.66	29.3
Appro	ach	919	0.7	919	0.7	0.451	18.8	LOS B	10.1	70.9	0.66	0.60	0.66	29.7
All Ve	hicles	2147	1.0	2147	1.0	0.592	12.1	LOS A	10.1	70.9	0.42	0.41	0.42	38.8

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Network Data dialog (Network tab). Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Delay Model: SIDRA Standard (Geometric Delay is included).

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

SITE LAYOUT Site: 301 [301_EXAM_Pembroke x Rose Payten Dr (Site Folder: General)]

Pembroke Road x Rose Payten Drive x Smiths Creek Bypass Weekday AM Peak : 8:00am - 9:00am Site Category: (None) Signals - EQUISAT (Fixed-Time/SCATS) Isolated

Layout pictures are schematic functional drawings reflecting input data. They are not design drawings.

SIDRA INTERSECTION 9.0 | Copyright © 2000-2020 Akcelik and Associates Pty Ltd | sidrasolutions.com Organisation: TRAFFIX PTY LTD | Licence: NETWORK / 1PC | Created: Thursday, 8 July 2021 3:43:32 PM Project: T:\Synergy\Projects\21\21.219\Modelling\21.219m01v01 TRAFFIX 80 O'Sullivan Rd, Leumeah.sip9

Site: 301 [301_EXAM_Pembroke x Rose Payten Retwork: 1 [EXAM (Network Folder: General)] Dr (Site Folder: General)]

Pembroke Road x Rose Payten Drive x Smiths Creek Bypass Weekday AM Peak : 8:00am - 9:00am Site Category: (None) Signals - EQUISAT (Fixed-Time/SCATS) Coordinated Cycle Time = 120 seconds (Network Optimum Cycle Time -Minimum Delay)

Timings based on settings in the Network Timing dialog Phase Times determined by the program Downstream lane blockage effects included in determining phase times Phase Sequence: SCATS Reference Phase: Phase A Input Phase Sequence: A, B*, C*, D, D1*, D2*, E, F1*, F2* Output Phase Sequence: A, D, E (* Variable Phase)

Vehic	cle Mo	vement	Perfor	manc	e									
Mov ID	Turn	DEMA FLO	AND WS	ARRI FLO	IVAL WS	Deg. Satn	Aver. Delay	Level of Service	AVERA OF C	GE BACK QUEUE	Prop. Que	Effective A Stop	ver. No. Cycles	Aver. Speed
		[Total	HV] %	[Total	HV]	vic	292		[Veh.	Dist]		Rate		km/h
South	: Smith	s Creek E	Bypass	VCH/H	70	V/C	300		VCII					KITI/TT
1	L2	237	5.8	237	5.8	0.285	13.6	LOS A	2.5	18.7	0.52	0.71	0.52	40.2
2	T1	394	2.7	394	2.7	0.355	33.4	LOS C	6.0	42.8	0.81	0.67	0.81	37.2
3	R2	25	8.3	25	8.3	0.073	41.3	LOS C	0.7	5.0	0.76	0.70	0.76	34.3
Appro	ach	656	4.0	656	4.0	0.355	26.6	LOS B	6.0	42.8	0.70	0.69	0.70	37.6
East:	Pembr	oke Road												
4	L2	9	0.0	9	0.0	0.007	6.9	LOS A	0.0	0.3	0.20	0.58	0.20	52.6
5	T1	689	1.8	689	1.8	0.591	30.1	LOS C	11.6	82.5	0.80	0.69	0.80	31.2
6	R2	254	15.4	254	15.4	* 0.631	25.7	LOS B	4.6	36.4	0.91	0.82	0.91	41.7
Appro	ach	953	5.4	953	5.4	0.631	28.7	LOS C	11.6	82.5	0.82	0.73	0.82	35.0
North	Rose	Payten D	rive											
7	L2	538	6.5	538	6.5	0.569	18.0	LOS B	9.1	67.2	0.62	0.81	0.62	46.9
8	T1	196	2.7	196	2.7	0.160	31.4	LOS C	2.5	17.9	0.76	0.61	0.76	38.1
9	R2	151	7.7	151	7.7	* 0.614	51.7	LOS D	5.0	37.4	0.95	0.82	0.95	22.7
Appro	ach	884	5.8	884	5.8	0.614	26.7	LOS B	9.1	67.2	0.71	0.76	0.71	40.6
West:	Pemb	oke Road	b											
10	L2	286	3.7	286	3.7	0.269	8.6	LOS A	1.2	8.9	0.23	0.62	0.23	51.4
11	T1	683	0.9	683	0.9	* 0.600	34.3	LOS C	14.4	101.3	0.91	0.79	0.91	37.6
12	R2	119	6.2	119	6.2	0.264	21.7	LOS B	2.0	14.9	0.76	0.75	0.76	40.9
Appro	ach	1088	2.2	1088	2.2	0.600	26.1	LOS B	14.4	101.3	0.71	0.74	0.71	40.8
All Ve	hicles	3581	4.3	3581	4.3	0.631	27.0	LOS B	14.4	101.3	0.74	0.73	0.74	38.8

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Network Data dialog (Network tab). Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Delay Model: SIDRA Standard (Geometric Delay is included).

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

* Critical Movement (Signal Timing)

Site: 302 [302_EXPM_Pembroke x Rose Payten Network: 2 [EXPM (Network Folder: General)] Dr (Site Folder: General)]

Pembroke Road x Rose Payten Drive x Smiths Creek Bypass Weekday PM Peak : 4:45pm - 5:45pm Site Category: (None) Signals - EQUISAT (Fixed-Time/SCATS) Coordinated Cycle Time = 130 seconds (Network Optimum Cycle Time -Minimum Delay)

Timings based on settings in the Network Timing dialog Phase Times determined by the program Downstream lane blockage effects included in determining phase times Phase Sequence: SCATS Reference Phase: Phase A Input Phase Sequence: A, B*, C*, D, D1*, D2*, E, F1*, F2* Output Phase Sequence: A, D, D1*, E (* Variable Phase)

Vehic	/ehicle Movement Performance													
Mov Turn DEMAND ARRIVAL Deg. Aver. Level of AVERAGE BACK Prop. Effective Aver. ID FLOWS FLOWS Satn Delay Service OF QUEUE Que Stop Cyc										ver. No. Cycles	Aver. Speed			
		[Total veh/h	HV] %	[Total veh/h	HV] %	v/c	sec		[Veh. veh	Dist] m		Rate		km/h
South	: Smith	s Creek I	Bypass											
1	L2	172	3.7	172	3.7	0.261	18.5	LOS B	2.3	16.4	0.63	0.73	0.63	35.6
2	T1	279	1.1	279	1.1	0.157	22.0	LOS B	3.1	22.1	0.62	0.51	0.62	42.8
3	R2	9	0.0	9	0.0	0.025	32.8	LOS C	0.2	1.6	0.64	0.66	0.64	37.4
Appro	ach	460	2.1	460	2.1	0.261	20.9	LOS B	3.1	22.1	0.63	0.60	0.63	40.9
East:	Pembr	oke Road												
4	L2	22	0.0	22	0.0	0.019	9.5	LOS A	0.2	1.2	0.33	0.61	0.33	50.6
5	T1	635	1.0	635	1.0	0.737	42.7	LOS D	13.0	91.9	0.90	0.78	0.91	25.9
6	R2	234	10.4	234	10.4	*0.677	36.0	LOS C	5.9	45.0	0.97	0.83	0.98	37.4
Appro	ach	891	3.4	891	3.4	0.737	40.1	LOS C	13.0	91.9	0.91	0.79	0.91	30.2
North:	Rose	Payten D	rive											
7	L2	249	5.1	249	5.1	0.227	11.9	LOS A	3.0	22.1	0.36	0.65	0.36	50.1
8	T1	423	3.2	423	3.2	0.256	23.0	LOS B	5.3	38.1	0.65	0.55	0.65	42.2
9	R2	346	2.4	346	2.4	*0.743	42.2	LOS C	11.8	84.5	0.91	0.87	0.94	25.6
Appro	ach	1019	3.4	1019	3.4	0.743	26.8	LOS B	11.8	84.5	0.67	0.68	0.68	38.6
West:	Pembr	oke Road	b											
10	L2	229	2.3	229	2.3	0.186	7.1	LOS A	0.7	4.7	0.13	0.59	0.13	52.6
11	T1	578	1.6	578	1.6	*0.742	55.3	LOS D	14.8	104.8	0.99	0.85	1.00	30.2
12	R2	252	3.8	252	3.8	0.748	41.5	LOS C	6.9	49.6	1.00	0.85	1.04	32.0
Appro	ach	1059	2.3	1059	2.3	0.748	41.6	LOS C	14.8	104.8	0.81	0.79	0.82	33.8
All Ve	hicles	3428	2.9	3428	2.9	0.748	34.0	LOS C	14.8	104.8	0.77	0.73	0.78	35.0

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Network Data dialog (Network tab). Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Delay Model: SIDRA Standard (Geometric Delay is included).

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

* Critical Movement (Signal Timing)

Site: 303 [303_EXSAT_Pembroke x Rose Payten Dr (Site Folder: General)]

Pembroke Road x Rose Payten Drive x Smiths Creek Bypass Weekend Sat Peak :11:00am - 12:00am Site Category: (None) Signals - EQUISAT (Fixed-Time/SCATS) Coordinated Cycle Time = 120 seconds (Network Optimum Cycle Time -Minimum Delay)

Timings based on settings in the Network Timing dialog Phase Times determined by the program Downstream lane blockage effects included in determining phase times Phase Sequence: SCATS Reference Phase: Phase A Input Phase Sequence: A, B*, C*, D, D1*, D2*, E, F1*, F2* Output Phase Sequence: A, D, E (* Variable Phase)

Vehic	cle Mo	vement	Perfor	mance	e									
Mov ID	Turn	DEMA FLO	AND WS	ARRI FLO	VAL WS	Deg. Satn	Aver. Delay	Level of Service	AVERAC OF Q	GE BACK	Prop. Que	Effective A Stop	ver. No. Cycles	Aver. Speed
		[lotal veh/h	HV J %	[lotal veh/h	HV J %	v/c	sec		[Veh. veh	Dist J m		Rate		km/h
South	: Smith	s Creek I	Bypass	VOII/II		110	000		Voli					
1	L2	184	1.1	184	1.1	0.217	13.2	LOS A	1.8	12.8	0.50	0.69	0.50	40.4
2	T1	304	1.0	304	1.0	0.259	34.1	LOS C	4.1	29.1	0.80	0.66	0.80	36.9
3	R2	13	0.0	13	0.0	0.040	42.2	LOS C	0.3	2.4	0.78	0.68	0.78	33.8
Appro	ach	501	1.1	501	1.1	0.259	26.6	LOS B	4.1	29.1	0.69	0.67	0.69	37.5
East:	Pembr	oke Road												
4	L2	15	0.0	15	0.0	0.011	7.2	LOS A	0.1	0.5	0.22	0.59	0.22	52.4
5	T1	668	1.3	668	1.3	*0.611	32.3	LOS C	11.7	82.6	0.83	0.71	0.83	30.1
6	R2	213	4.0	213	4.0	* 0.405	22.0	LOS B	3.5	25.3	0.79	0.78	0.79	43.7
Appro	ach	896	1.9	896	1.9	0.611	29.4	LOS C	11.7	82.6	0.81	0.73	0.81	34.4
North	Rose	Payten D	rive											
7	L2	214	3.4	214	3.4	0.207	10.9	LOS A	2.3	16.3	0.36	0.66	0.36	50.8
8	T1	244	1.3	244	1.3	0.208	33.5	LOS C	3.2	23.0	0.79	0.64	0.79	37.2
9	R2	180	0.6	180	0.6	* 0.625	50.6	LOS D	5.9	41.7	0.95	0.83	0.95	23.0
Appro	ach	638	1.8	638	1.8	0.625	30.8	LOS C	5.9	41.7	0.69	0.70	0.69	37.2
West:	Pembr	oke Road	b											
10	L2	237	1.3	237	1.3	0.198	7.3	LOS A	0.7	5.2	0.16	0.60	0.16	52.4
11	T1	597	1.2	597	1.2	0.561	35.3	LOS C	12.7	89.6	0.92	0.79	0.92	36.9
12	R2	134	1.6	134	1.6	0.251	20.9	LOS B	2.3	16.0	0.78	0.76	0.78	41.5
Appro	ach	967	1.3	967	1.3	0.561	26.5	LOS B	12.7	89.6	0.71	0.74	0.71	40.4
All Ve	hicles	3002	1.5	3002	1.5	0.625	28.3	LOS B	12.7	89.6	0.73	0.71	0.73	37.6

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Network Data dialog (Network tab). Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Delay Model: SIDRA Standard (Geometric Delay is included).

Gap-Acceptance Capacity: SIDRA Standard (Akcelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

* Critical Movement (Signal Timing)

Site: 304 [304_PRAM_Pembroke x Rose Payten Retwork: 4 [PRAM (Network Folder: General)] Dr (Site Folder: General)]

Pembroke Road x Rose Payten Drive x Smiths Creek Bypass Weekday AM Peak : 8:00am - 9:00am Site Category: (None) Signals - EQUISAT (Fixed-Time/SCATS) Coordinated Cycle Time = 120 seconds (Network Optimum Cycle Time -Minimum Delay)

Timings based on settings in the Network Timing dialog Phase Times determined by the program Downstream lane blockage effects included in determining phase times Phase Sequence: SCATS Reference Phase: Phase A Input Phase Sequence: A, B*, C*, D, D1*, D2*, E, F1*, F2* Output Phase Sequence: A, D, E (* Variable Phase)

Vehic	cle Mo	vement	Perfor	mance	e									
Mov ID	Turn	DEM/ FLO	AND WS	ARRI FLO	VAL WS	Deg. Satn	Aver. Delav	Level of Service	AVERA OF C	GE BACK QUEUE	Prop. Que	Effective A Stop	ver. No. Cvcles	Aver. Speed
		[Total	HV]	[Total	HV]				[Veh.	Dist]		Rate		
		veh/h	%	veh/h	%	v/c	sec		veh	m				km/h
South	: Smith	s Creek I	Bypass											
1	L2	238	5.8	238	5.8	0.287	14.6	LOS B	2.6	18.9	0.52	0.71	0.52	40.1
2	T1	394	2.7	394	2.7	0.344	32.6	LOS C	5.9	42.0	0.80	0.66	0.80	37.6
3	R2	25	8.3	25	8.3	0.071	40.6	LOS C	0.7	4.9	0.75	0.70	0.75	34.6
Appro	ach	657	4.0	657	4.0	0.344	26.4	LOS B	5.9	42.0	0.70	0.68	0.70	37.9
East:	Pembr	oke Road												
4	L2	9	0.0	9	0.0	0.007	7.1	LOS A	0.0	0.3	0.21	0.58	0.21	52.5
5	T1	692	1.8	692	1.8	0.609	30.8	LOS C	11.8	83.7	0.81	0.70	0.81	30.8
6	R2	254	15.4	254	15.4	*0.645	26.6	LOS B	4.7	37.1	0.92	0.82	0.92	41.3
Appro	ach	955	5.4	955	5.4	0.645	29.5	LOS C	11.8	83.7	0.83	0.73	0.83	34.6
North	Rose	Payten D	rive											
7	L2	538	6.5	538	6.5	0.568	18.4	LOS B	9.0	66.2	0.62	0.81	0.62	46.7
8	T1	196	2.7	196	2.7	0.156	30.7	LOS C	2.5	17.7	0.75	0.60	0.75	38.4
9	R2	155	7.5	155	7.5	* 0.609	50.7	LOS D	5.1	38.0	0.94	0.82	0.94	23.0
Appro	ach	888	5.8	888	5.8	0.609	26.7	LOS B	9.0	66.2	0.71	0.77	0.71	40.6
West:	Pemb	oke Road	b											
10	L2	292	3.6	292	3.6	0.271	8.6	LOS A	1.3	9.1	0.23	0.62	0.23	51.4
11	T1	693	0.9	693	0.9	* 0.622	35.3	LOS C	14.7	104.0	0.92	0.80	0.92	37.2
12	R2	120	6.1	120	6.1	0.270	22.2	LOS B	2.1	15.6	0.79	0.75	0.79	40.7
Appro	ach	1104	2.2	1104	2.2	0.622	26.8	LOS B	14.7	104.0	0.72	0.75	0.72	40.5
All Ve	hicles	3604	4.3	3604	4.3	0.645	27.4	LOS B	14.7	104.0	0.74	0.74	0.74	38.7

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Network Data dialog (Network tab). Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Delay Model: SIDRA Standard (Geometric Delay is included).

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

* Critical Movement (Signal Timing)

Site: 305 [305_PRPM_Pembroke x Rose Payten Network: 5 [PRPM (Network Folder: General)] Dr (Site Folder: General)]

Pembroke Road x Rose Payten Drive x Smiths Creek Bypass Weekday PM Peak : 4:45pm - 5:45pm Site Category: (None) Signals - EQUISAT (Fixed-Time/SCATS) Coordinated Cycle Time = 120 seconds (Network Optimum Cycle Time -Minimum Delay)

Timings based on settings in the Network Timing dialog Phase Times determined by the program Downstream lane blockage effects included in determining phase times Phase Sequence: SCATS Reference Phase: Phase A Input Phase Sequence: A, B*, C*, D, D1*, D2*, E, F1*, F2* Output Phase Sequence: A, D, E (* Variable Phase)

Vehic	cle Mo	vement	Perfor	manc	e									
Mov ID	Turn	DEM/ FLO	AND WS	ARRI FLO	VAL WS	Deg. Satn	Aver. Delay	Level of Service	AVERAC OF Q	GE BACK	Prop. Que	Effective A Stop	ver. No. Cycles	Aver. Speed
		[Total veh/h	HV] %	[Total veh/h	HV] %	v/c	sec		[Veh. veh	Dist] m		Rate		km/h
South	: Smith	s Creek I	Bypass											
1	L2	174	3.6	174	3.6	0.274	20.2	LOS B	2.3	16.3	0.66	0.74	0.66	35.4
2	T1	279	1.1	279	1.1	0.156	20.0	LOS B	2.9	20.2	0.62	0.51	0.62	43.9
3	R2	9	0.0	9	0.0	0.024	30.2	LOS C	0.2	1.5	0.64	0.65	0.64	38.6
Appro	ach	462	2.1	462	2.1	0.274	20.3	LOS B	2.9	20.2	0.63	0.60	0.63	41.6
East:	Pembro	oke Road	l											
4	L2	22	0.0	22	0.0	0.021	9.2	LOS A	0.2	1.1	0.33	0.61	0.33	50.8
5	T1	641	1.0	641	1.0	*0.752	41.1	LOS C	12.7	89.4	0.91	0.80	0.93	26.5
6	R2	234	10.4	234	10.4	* 0.791	39.6	LOS C	6.2	46.9	1.00	0.90	1.15	36.1
Appro	ach	897	3.4	897	3.4	0.791	39.9	LOS C	12.7	89.4	0.92	0.82	0.97	30.2
North	Rose	Payten D	rive											
7	L2	249	5.1	249	5.1	0.231	11.7	LOS A	2.9	20.8	0.38	0.66	0.38	50.2
8	T1	423	3.2	423	3.2	0.243	20.9	LOS B	4.6	33.3	0.65	0.55	0.65	43.4
9	R2	359	2.3	359	2.3	* 0.757	40.2	LOS C	11.6	82.7	0.91	0.88	0.96	26.4
Appro	ach	1032	3.4	1032	3.4	0.757	25.4	LOS B	11.6	82.7	0.67	0.69	0.69	39.3
West:	Pembr	oke Roa	b											
10	L2	233	2.3	233	2.3	0.180	6.4	LOS A	0.3	2.1	0.04	0.56	0.04	53.2
11	T1	583	1.6	583	1.6	0.691	46.9	LOS D	13.5	95.6	0.98	0.84	0.98	32.7
12	R2	253	3.8	253	3.8	0.801	41.5	LOS C	6.6	48.0	1.00	0.87	1.08	32.1
Appro	ach	1068	2.3	1068	2.3	0.801	36.8	LOS C	13.5	95.6	0.78	0.79	0.80	35.6
All Ve	hicles	3459	2.9	3459	2.9	0.801	32.0	LOS C	13.5	95.6	0.77	0.74	0.79	35.9

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Network Data dialog (Network tab). Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Delay Model: SIDRA Standard (Geometric Delay is included).

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

* Critical Movement (Signal Timing)

Site: 306 [306_PRSAT_Pembroke x Rose Payten Dr (Site Folder: General)]

Pembroke Road x Rose Payten Drive x Smiths Creek Bypass Weekend Sat Peak :11:00am - 12:00am Site Category: (None) Signals - EQUISAT (Fixed-Time/SCATS) Coordinated Cycle Time = 120 seconds (Network Optimum Cycle Time -Minimum Delay)

Timings based on settings in the Network Timing dialog Phase Times determined by the program Downstream lane blockage effects included in determining phase times Phase Sequence: SCATS Reference Phase: Phase A Input Phase Sequence: A, B*, C*, D, D1*, D2*, E, F1*, F2* Output Phase Sequence: A, D, E (* Variable Phase)

Vehicle Movement Performance														
Mov	Mov Turn				VAL	Deg.	Aver.	Level of	AVERAGE BACK		Prop.	Effective Aver. No.		Aver.
שו		FLO ^v [Total	иS H\/1	FLO Total	vv5 H\/1	Sath	Delay	Service	UF Q [\/eh	UEUE Dist 1	Que	Stop Rate	Cycles	Speed
		veh/h	%	veh/h	%	v/c	sec		veh	m		naic		km/h
South	: Smith	s Creek I	Bypass											
1	L2	186	1.1	186	1.1	0.226	14.4	LOS A	1.8	13.1	0.51	0.70	0.51	40.1
2	T1	304	1.0	304	1.0	0.245	32.4	LOS C	4.0	28.3	0.78	0.64	0.78	37.7
3	R2	13	0.0	13	0.0	0.038	40.5	LOS C	0.3	2.3	0.76	0.68	0.76	34.4
Appro	ach	503	1.0	503	1.0	0.245	26.0	LOS B	4.0	28.3	0.68	0.66	0.68	38.0
East: Pembroke Road														
4	L2	15	0.0	15	0.0	0.012	7.3	LOS A	0.1	0.5	0.23	0.59	0.23	52.3
5	T1	675	1.2	675	1.2	*0.636	33.1	LOS C	11.9	84.3	0.84	0.72	0.84	29.7
6	R2	213	4.0	213	4.0	*0.426	23.3	LOS B	3.6	26.4	0.81	0.78	0.81	43.1
Appro	ach	902	1.9	902	1.9	0.636	30.4	LOS C	11.9	84.3	0.82	0.74	0.82	33.9
North: Rose Payten Drive														
7	L2	214	3.4	214	3.4	0.206	11.2	LOS A	2.3	16.7	0.37	0.66	0.37	50.6
8	T1	244	1.3	244	1.3	0.197	31.9	LOS C	3.2	22.4	0.77	0.62	0.77	37.9
9	R2	193	0.5	193	0.5	*0.628	48.4	LOS D	6.2	43.9	0.94	0.83	0.94	23.6
Appro	ach	651	1.8	651	1.8	0.628	30.0	LOS C	6.2	43.9	0.69	0.69	0.69	37.5
West: Pembroke Road														
10	L2	240	1.3	240	1.3	0.199	7.2	LOS A	0.7	5.1	0.15	0.59	0.15	52.5
11	T1	602	1.2	602	1.2	0.579	36.3	LOS C	12.9	91.3	0.93	0.80	0.93	36.5
12	R2	135	1.6	135	1.6	0.265	22.5	LOS B	2.4	17.2	0.82	0.77	0.82	40.6
Appro	ach	977	1.3	977	1.3	0.579	27.2	LOS B	12.9	91.3	0.72	0.74	0.72	40.0
All Ve	hicles	3033	1.5	3033	1.5	0.636	28.6	LOS C	12.9	91.3	0.74	0.72	0.74	37.5

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Network Data dialog (Network tab). Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Delay Model: SIDRA Standard (Geometric Delay is included).

Gap-Acceptance Capacity: SIDRA Standard (Akcelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

* Critical Movement (Signal Timing)